Процесс переваривания белков в организме человека

Для поддержания своей жизнедеятельности человек должен употреблять пищу. Пищевые продукты содержат все необходимые для жизни вещества: воду, минеральные соли и органические соединения. Белки, жиры и углеводы синтезируются растениями из неорганических веществ с помощью солнечной энергии. Животные строят своё тело из питательных веществ растительного или животного происхождения.

Питательные вещества, поступающие в организм с пищей, — это строительный материал и одновременно источник энергии. При распаде и окислении белков, жиров и углеводов выделяется разное, но постоянное для каждого вещества количество энергии, характеризующее их энергетическую ценность.

Попав в организм, пищевые продукты подвергаются механическим изменениям — измельчаются, смачиваются, расщепляются на более простые соединения, растворяются в воде и всасываются. Совокупность процессов, в результате которых питательные вещества из окружающей среды переходят в кровь, называется пищеварением.

Огромное значение в процессе пищеварения играют ферменты — биологически активные белковые вещества, которые катализируют (ускоряют) химические реакции. В процессах пищеварения они катализируют реакции гидролитического расщепления питательных веществ, но сами при этом не изменяются.

Основные свойства ферментов:

  • специфичность действия — каждый фермент расщепляет питательные вещества только определённой группы (белки, жиры или углеводы) и не расщепляет другие;
  • действуют только в определённой химической среде — одни в щелочной, другие в кислой;
  • наиболее активно ферменты действуют при температуре тела, а при температуре 70–100ºС они разрушаются;
  • небольшое количество фермента может расщепить большую массу органического вещества.

Органы пищеварения

Пищеварительный канал представляет собой трубку, проходящую через всё тело. Стенка канала состоит из трёх слоёв: наружного, среднего и внутреннего.

Наружный слой (серозная оболочка) образован соединительной тканью, отделяющей пищеварительную трубку от окружающих тканей и органов.

Средний слой (мышечная оболочка) в верхних отделах пищеварительной трубки (полость рта, глотка, верхняя часть пищевода) представлен поперечнополосатой, а в нижних — гладкой мышечной тканью. Чаще всего мышцы располагаются в два слоя — круговой и продольный. Благодаря сокращению мышечной оболочки пища продвигается по пищеварительному каналу.

Внутренний слой (слизистая оболочка) выстлана эпителием. В нём содержатся многочисленные железы, выделяющие слизь и пищеварительные соки.

Помимо мелких желёз имеются крупные железы (слюнные, печень, поджелудочная) лежащие вне пищеварительного канала и сообщающиеся с ними своими протоками.

В пищеварительном канале различают следующие отделы: полость рта, глотку, пищевод, желудок, кишечник тонкий и толстый.

Схема пищеварительного тракта в составе пищеварительной системы:

  1. Слюнные железы
  2. Околоушная железа
  3. Подчелюстная железа
  4. Подъязычная железа
  5. Ротовая полость
  6. Глотка
  7. Язык
  8. Пищевод
  9. Поджелудочная железа
  10. Желудок
  11. Проток поджелудочной железы
  12. Печень
  13. Желчный пузырь
  14. Двенадцатиперстная кишка
  15. Общий желчный проток
  16. Ободочная кишка
  17. Поперечная ободочная кишка
  18. Восходящая ободочная кишка
  19. Нисходящая ободочная кишка
  20. Подвздошная кишка (тонкая кишка)
  21. Слепая кишка
  22. Аппендикс
  23. Прямая кишка
  24. Анальное отверстие

Пищеварение в ротовой полости

Ротовая полость — начальный отдел пищеварительного тракта. Сверху она ограничена твёрдым и мягким нёбом, снизу диафрагмой рта, а спереди и с боков — зубами и дёснами.

В полость рта открываются протоки трёх пар слюнных желёз: околоушных, подъязычных и подчелюстных. Кроме этих имеется масса мелких слизистых слюнных желёз, разбросанных по всей ротовой полости. Секрет слюнных желёз — слюна — смачивает пищу и участвует в её химическом изменении.

В слюне содержатся только два фермента — амилаза (птиалин) и мальтаза, которые переваривают углеводы. Но так как в ротовой полости пища находится недолго, расщепление углеводов не успевает закончиться. В слюне содержатся также муцин (слизистое вещество) и лизоцим, обладающий бактерицидными свойствами.

Состав и количество слюны может изменяться в зависимости от физических свойств пищи. В течение суток у человека выделяется от 600 до 150 мл слюны.

В полости рта у взрослого человека имеется 32 зуба по 16 в каждой челюсти. Ими пища захватывается, откусывается и пережёвывается.

Зубы состоят из особого вещества дентина являющегося видоизменением костной ткани и обладающей большей прочностью. Снаружи зубы покрыты эмалью. Внутри зуба имеется полость, заполненная рыхлой соединительной тканью, в которой находятся нервы и кровеносные сосуды.

Большая часть ротовой полости занята языком , который представляет собой мышечный орган, покрытый слизистой оболочкой. В нём различают верхушку, корень, тело и спинку, на которой находятся вкусовые рецепторы. Язык — орган вкуса и речи. С его помощью пища перемешивается во время пережёвывания и проталкивается при глотании.

Подготовленная в ротовой полости пища проглатывается. Глотание — сложное движение, в котором участвуют мышцы языка и глотки. Во время глотания мягкое нёбо приподнимается и преграждает пище путь в носовую полость.

Надгортанник в это время закрывает вход в гортань. Пищевой комок попадает в глотку — верхнюю часть пищеварительного канала. Она представляет собой трубку, внутренняя поверхность которой выстлана слизистой оболочкой.

Через глотку пища поступает в пищевод.

Пищевод — трубка длиной около 25 см, являющаяся прямым продолжением глотки. В пищеводе никаких изменений пищи не происходит, так как в нём не секретируются пищеварительные соки. Он служит для проведения пищи в желудок. Продвижение пищевого комка по глотке и пищеводу происходит в результате сокращения мускулатуры этих отделов.

Пищеварение в желудке

Желудок — самый расширенный отдел пищеварительной трубки ёмкостью до трёх литров. Размеры и форма желудка изменяются в зависимости от количества принятой пищи и степени сокращения его стенок. В местах впадения пищевода в желудок и перехода желудка в тонкий кишечник имеются сфинктеры (сжиматели), регулирующие движение пищи.

Слизистая оболочка желудка образует продольные складки и содержит большое количество желёз (до 30 млн). Железы состоят из трёх типов клеток: главных (вырабатывающих ферменты желудочного сока), обкладочных (выделяющих соляную кислоту) и добавочных (выделяющих слизь).

Сокращениями стенок желудка пища перемешивается с соком, что способствует её лучшему перевариванию. В процессе переваривания пищи в желудке участвует несколько ферментов. Главный из них пепсин. Он расщепляет сложные белки на более простые, которые подвергаются дальнейшей переработке в кишечнике.

Пепсин действует только в кислой среде, которая создаётся соляной кислотой желудочного сока. Большая роль отводится соляной кислоте в обеззараживании содержимого желудка. Другие ферменты желудочного сока (химозин и липаза) способны переваривать белок и жиры молока.

Химозин створаживает молоко, благодаря чему оно дольше задерживается в желудке и подвергается перевариванию. Липаза, имеющаяся в незначительном количестве в желудке, расщепляет только эмульгированный жир молока. Действие этого фермента в желудке взрослого человека выражено слабо. Ферментов, действующих на углеводы, в составе желудочного сока нет.

однако значительная часть крахмала пищи продолжает перевариваться в желудке амилазой слюны. Слизь, выделяемая железами желудка, играет важную роль в защите слизистой оболочки от механических и химических повреждений, от переваривающего действия пепсина. Железы желудка выделяют сок только во время пищеварения.

При этом характер сокоотделения зависит от химического состава употребляемой пищи. После 3–4 часовой обработки в желудке пищевая кашица маленькими порциями поступает в тонкий кишечник.

Тонкий кишечник

Тонкий кишечник представляет собой самую длинную часть пищеварительной трубки, достигающую у взрослого человека 6–7 метров. Он состоит из двенадцатипёрстной, тощей и подвздошной кишок.

В начальный отдел тонкого кишечника — двенадцатипёрстную кишку — открываются выводные протоки двух крупных пищеварительных желёз — поджелудочной железы и печени. Здесь происходит наиболее интенсивное переваривание пищевой кашицы, которая подвергается действию трёх пищеварительных соков: поджелудочного, желчи и кишечного.

Поджелудочная железа расположена позади желудка. В ней различают верхушку, тело и хвост. Верхушка железы окружена подковообразно двенадцатипёрстной кишкой, а хвост прилегает к селезёнке.

Клетки железы вырабатывают поджелудочный сок (панкреатический). Он содержит ферменты, действующие на белки, жиры и углеводы. Фермент трипсин расщепляет белки до аминокислот, но оказывается активным только в присутствии кишечного фермента — энтерокиназы.

Липаза расщепляет жиры на глицерин и жирные кислоты. Активность её резко усиливается под влиянием желчи, вырабатываемой в печени и поступающей в двенадцатипёрстную кишку. Под влиянием амилазы и мальтозы поджелудочного сока происходит расщепление большинства углеводов пищи до глюкозы.

Все ферменты поджелудочного сока активны только в щелочной среде.

В тонком кишечнике пищевая кашица подвергается не только химической, но и механической обработке. Благодаря маятникообразным движениям кишки (попеременное удлинение и укорочение) она перемешивается с пищеварительными соками и разжижается. Перистальтические движения кишечника вызывают перемещения содержимого в направлении толстого кишечника.

Печень — самая крупная пищеварительная железа нашего тела (до 1,5 кг). Она лежит под диафрагмой, занимая правое подреберье. На нижней поверхности печени расположен желчный пузырь. Печень состоит из железистых клеток, образующих дольки. Между дольками находятся прослойки соединительной ткани, в которой проходят нервы, лимфатические и кровеносные сосуды и мелкие желчные протоки.

Желчь, вырабатываемая печенью, играет большую роль в процессе пищеварения. Она не расщепляет пищевых веществ, но подготавливает жиры к перевариванию и всасыванию. Под её действием жиры распадаются на мелкие капли, взвешенные в жидкости, т.е. превращаются в эмульсию. В таком виде они легче перевариваются.

Кроме того, желчь активно влияет на процессы всасывания в тонком кишечнике, усиливает перистальтику кишечника и отделение поджелудочного сока. Несмотря на то, что желчь образуется в печени непрерывно, в кишечник она поступает только при приёме пищи. Между периодами пищеварения желчь собирается в желчном пузыре.

По воротной вене в печень притекает венозная кровь из всего пищеварительного канала, поджелудочной железы и селезёнки. Ядовитые вещества, попадающие в кровь из желудочно-кишечного тракта, здесь обезвреживаются и затем выводятся с мочой. Таким образом печень осуществляет свою защитную (барьерную) функцию.

Печень участвует в синтезе целого ряда важных для организма веществ, таких, как гликоген, витамин А, оказывает влияние на процесс кроветворения, обмена белков, жиров, углеводов.

Всасывание питательных веществ

Чтобы образовавшиеся в результате расщепления аминокислоты, простые сахара, жирные кислоты и глицерин были использованы организмом, они должны всосаться. В ротовой полости и пищеводе эти вещества практически не всасываются. В желудке всасываются в незначительном количестве вода, глюкоза и соли; в толстых кишках — вода и некоторые соли.

Основные процессы всасывания питательных веществ происходят в тонком кишечнике, достаточно хорошо приспособленном для осуществления этой функции. В процессе всасывания активную роль играет слизистая оболочка тонкой кишки. Она имеет большое количество ворсинок и микроворсинок, которые увеличивают всасывающую поверхность кишечника.

В стенках ворсинок имеются гладкие мышечные волокна, а внутри их находятся кровеносные и лимфатические сосуды.

Ворсинки принимают участие в процессах всасывания питательных веществ. Сокращаясь, они способствуют оттоку крови и лимфы, насыщенных питательными веществами. При расслаблении ворсинок в их сосуды вновь поступает жидкость из полости кишечника. Продукты расщепления белков и углеводов всасываются непосредственно в кровь, а основная масса переваренных жиров — в лимфу.

Толстый кишечник

Толстый кишечник имеет длину до 1,5 метров. Диаметр его в 2–3 раза больше тонкого. В него попадают непереваренные остатки пищи, главным образом растительной, клетчатка которой не разрушается ферментами пищеварительного тракта. В толстом кишечнике очень много различных бактерий, часть которых играет важную роль в организме.

Целлюлозобактерии расщепляют клетчатку и тем самым улучшают усвоение растительной пищи. Есть бактерии которые синтезируют витамин К, необходимый для нормального функционирования системы свёртывания крови. Благодаря этому человек, не нуждается в приёме витамина К из внешней среды.

Кроме бактериального расщепления клетчатки в толстом кишечнике происходит всасывание большого количества воды, поступившей туда вместе с жидкой пищей и пищеварительными соками, завершается всасыванием питательных веществ и происходит образование каловых масс. Последние переходят в прямую кишку, а оттуда выводятся наружу через анальное отверстие.

Открытие и закрытие заднепроходного сфинктера происходит рефлекторно. Этот рефлекс находится под контролем коры головного мозга и на некоторое время может быть произвольно задержан.

Весь процесс пищеварения при животной и смешанной пище у человека длится около 1–2 суток, из которых более половины времени приходится на передвижение пищи по толстым кишкам. Каловые массы накапливаются в прямой кишке, в результате раздражения чувствительных нервов её слизистой оболочки наступает дефекация (опорожнение толстых кишок).

  • Процесс пищеварения представляет собой ряд этапов, каждый из которых проходит в определённом отделе пищеварительного тракта под действием определённых пищеварительных соков, выделяемых пищеварительными железами и действующих на определённые питательные вещества.
  • Ротовая полость — начало расщепления углеводов под действием ферментов слюны, вырабатываемой слюнными железами.
  • Желудок — расщепление белков и жиров под действием желудочного сока, продолжение расщепления углеводов внутри пищевого комка под действием слюны.

Тонкая кишка — завершение расщепления белков, полипептидов, жиров и углеводов под действием ферментов поджелудочного и кишечного соков и желчи. Сложные органические вещества в результате биохимических процессов превращаются в низкомолекулярные, которые, всасываясь в кровь и лимфу, становятся для организма источником энергии и пластических материалов.

Источник: https://biouroki.ru/material/human/pischevarenie.html

Этапы пищеварения. Всасывание питательных веществ в кровь — урок. Биология, Человек (8 класс)

Пищеварение в ротовой полости

Пережёвывая пищу, человек передвигает её в полости рта с помощью языка (с помощью рецепторов которого мы ощущаем вкус, механические свойства и температуру пищи). В ротовой полости находятся зубы, необходимые для механического измельчения пищи в процессе пережёвывания. Чем тщательнее измельчена пища во рту, тем лучше она подготовлена к обработке пищеварительными ферментами.

Во рту пища смачивается слюной, которая выделяется слюнными железами. Слюна на (98)–(99) % состоит из воды.

В слюне содержатся:

  • ферменты, расщепляющие сложные углеводы до простых углеводов (например, фермент птиалин расщепляет крахмал до промежуточного продукта, который другой фермент мальтаза превращает в глюкозу).
  • вещество муцин, которое делает пищевой комок скользким;
  • лизоцим — бактерицидное вещество, частично обеззараживающее пищу от бактерий, попадающих в ротовую полость и заживляющее повреждение слизистой оболочки ротовой полости.

Плохо пережёванная пища затрудняет работу пищеварительных желез и способствует развитию заболеваний желудка.

Из ротовой полости пищевой комок проходит в глотку, а затем проталкивается в пищевод.

Пища передвигается по пищеводу благодаря его перистальтике — волнообразным сокращениям мышц стенки пищевода.

Слизь, которая вырабатывается железами пищевода, облегчает продвижение пищи.

Пищеварение в желудке

В желудке начинают перевариваться белки и некоторые жиры (например, жир молока).

Некоторое время в пищевом комке продолжают действовать ферменты слюны, переваривающие сахара, а затем пищевой комок пропитывается желудочным соком, и в нём происходит переваривание белков под действием желудочного сока.

Важной особенностью и условием эффективного пищеварения в желудке является кислая среда (т. к. ферменты желудочного сока действуют на белки только при температуре тела и в кислой среде).

Желудочный сок имеет кислую реакцию. Соляная кислота, входящая в его состав, активирует фермент желудочного сока — пепсин, вызывает набухание и денатурацию (разрушение) белков и способствует последующему их расщеплению до аминокислот.

В процессе переваривания пищи стенки желудка медленно сокращаются (перистальтика желудка), перемешивая пищу с желудочным соком.

В зависимости от состава и объёма съеденной пищи её пребывание в желудке длится от (3) до (10) часов. После обработки ферментами желудочного сока пищевые массы порциями проходят из желудка в двенадцатиперстную кишку (начальный отдел тонкого кишечника) через отверстие, окружённое сфинктерами.

Пищеварение в тонком кишечнике

Важнейшие процессы переваривания пищи происходят в двенадцатиперстной кишке. Пищеварение происходит как в полости кишки (полостное), так и на клеточных мембранах (пристеночное), образующих огромное количество ворсинок, выстилающих тонкий кишечник. 

В двенадцатиперстной кишке на пищу действуют:

  • ферменты сока стенок кишечника (кишечный сок),
  • ферменты поджелудочной железы (поджелудочный, или панкреатический, сок);
  • желчь (вырабатываемая печенью).

В тонкой кишке продолжается расщепление пищевых веществ до простых соединений (белков — до аминокислот, жиров — до глицерина и жирных кислот, углеводов — до глюкозы) и всасывание их в кровь и лимфу.

Поверхность тонкой кишки покрыта ворсинками, которых так много ((2500) ворсинок на (1) см²), что поверхность кажется бархатистой. Ворсинки увеличивают общую всасывающую поверхность (общая поверхность ворсинок в кишечнике достигает (200) м²).

Стенки ворсинок состоят из однослойного эпителия, а в центре каждой ворсинки проходит лимфатический капилляр и кровеносные капилляры. В лимфу поступают продукты переработки жиров, а в кровь — аминокислоты и простые углеводы.

Особенностью и условием эффективного пищеварения в кишечнике является слабощелочная среда.

Стенки кишечника постоянно сокращаются, продвигая пищевые массы по кишечнику и перемешивая их. Перистальтика тонкого кишечника обеспечивает продвижение пищи к толстой кишке. Между тонким и толстым кишечником находится специальный клапан (сфинктер), пропускающий пищевые массы порциями и только в одном направлении.

Во время приёмов пищи (когда в желудок поступает новая порция пищи, и требуется освободить место в толстом кишечнике) стенки ободочной кишки усиленно сокращаются, проталкивая содержимое в прямую кишку.

Поступившие в прямую кишку каловые массы на (70) % состоят из воды, а всё остальное — остатки непереваренной пищи (главным образом клетчатки).

В толстом кишечнике всасываются вода, продукты расщепления клетчатки. Бактерии-симбионты, обитающие в толстом кишечнике человека, выполняют ряд функций — брожение клетчатки, синтез витаминов К и В.

Передвижение пищевых остатков по толстому кишечнику осуществляется примерно (12) часов. За это время происходит частичное всасывание из них воды и растворённых веществ. Железы толстой кишки вырабатывают сок, не содержащий ферментов, но содержащий слизь, необходимую для формирования кала. Каловые массы скапливаются в прямой кишке и удаляются через анальное отверстие.

Источники:

Любимова З. В., Маринова К. В. Биология. Человек и его здоровье. 8 класс. — М.: Владос.

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

http://school-collection.edu.ru

Источник: https://www.yaklass.ru/p/biologia/chelovek/pishchevaritelnaia-sistema-16033/etapy-pishchevareniia-16079/re-8d792070-b980-4368-85a7-f94f7e792130

Переваривание белков

Переваривание белков в организме включает в себя 2 процесса: 1) денатурацию и 2) протеолиз.

Денатурация белков

Денатурация белка — это нарушение третичной структуры белковой молекулы и изменение её нативной (природной) конформации засчёт разрыва в ней большого количества слабых связей.

Так как разрыв внутримолекулярных химичпеских связей носит случайный характер, то молекулы одного и того же конкретного белка приобретают в водном растворе форму случайно сформировавшихся беспорядочных клубков.

Они отличаются друг от друга по своей трёхмерной структуре, но не по аминокислотному составу. Как правило, потеря нативной конформации приводит к утрате специфической функции, характерной для данного белка. Этот процесс как раз и носит название денатурации белков.

Важно отметить, что при денатурации белков не происходит разрыва пептидных связей, т.е. первичная структура белка не нарушается.

Рисунок: Денатурация молекулы белка

В денатурированном белке гидрофобные радикалы уже не спрятаны внутри гидрофобного ядра, как в нативной молекуле, а оказываются на поверхности. При достаточно высокой концентрации белка и отсутствии сильного отталкивающего заряда такие молекулы могут объединяться друг с другом гидрофобными взаимодействиями.

В результате этого растворимость белка снижается и происходит образование осадка. Денатурированные белки осаждаются.Денатурация белков облегчает их переваривание.

Компактная и плотная молекула нативного белка при денатурации резко увеличивается в размерах и становится легко доступной для расщепления пептидных связей протеолитическими ферментами, которые расщепляют белки.

Термическая обработка мясной пищи перед употреблением не только улучшает её вкусовые качества, но и облегчает её ферментативное переваривание в пищеварительной системе.

Кроме того, денатурирующим действием на пищевые белки обладает и кислая среда желудка, вызывающая денатурацию тех белков, которые не подвергались предварительной температурной обработке.

С медицинской точки зрения также важным является то, что кислая среда желудка оказывает денатурирующее действие на белки микроорганизмов, попавших в желудок с пищей, и обезвреживает их, т.к. лишает денатурированные белки специфической активности.

В процессе переваривания белков кислота желудка и щелочь кишечника изменяют рН среды, засчёт чего происходит перераспределение связей в молекуле белка, что и приводит к его денатурации. В свою очередь денатурация белковых молекул облегчает их расщепление ферментами уже по пептидным связям.

Протеолиз (расщепление белка)

Расщепление белка до аминокислот — это основной процесс в переваривании белков в организме. Для расщепления белков нужна соответствующая среда, ферменты и вода. Вода необходима для проведения расщепления путём гидролиза.

Гидролиз — это расщепление вещества при участии воды.

Протеолиз — это гидролиз белков, т.е. расщепление белков при участии воды.

Гидролиз белков осуществляют протеолитические ферменты. Большое разнообразие протеолитических ферментов связано со специфичностью их воздействия на белок. Место приложения или действия протеолитического фермента связано со структурой радикалов, находящихся рядом с пептидной связью.

Ферменты, расщепляющие белки

Эндопептидазы — расщепляют белок изнутри молекулы.Экзопептидазы – отщепляют аминокислотные остатки с конца белковой молекулы.

  • Пепсин — расщепляет связь между фенилаланином и тирозином, глутаминовой кислотой и цистином (метионином, глицином), между валином и лейцином.
  • Трипсин — расщепляет связь между аргинином (лизином) и другими аминокислотами.
  • Химотрипсин – расщепляет связь между ароматическими аминокислотами (триптофан, тирозин, фенилаланин) и метионином.
  • Аминопептидазы — действуют со стороны N – концевой аминокислоты.
  • Карбоксипептидазы — действуют со стороны С – концевой аминокислоты.
  • Для полного гидролиза белковой молекулы необходим набор большого количества различных протеолитических ферментов.
  • Гидролиз белка можно представить в виде схемы:БЕЛКИ → АЛЬБУМОЗЫ → ПОЛИПЕПТИДЫ → ПЕПТИДЫ → ДИПЕПТИДЫ → АМИНОКИСЛОТЫ
  • Соответственно, осуществляют эти процессы ферменты-протеазы: химотрепсин / аминопептидаза / пепсин / пепсин / трипсин / карбоксипептадаза аминопептидаза.

Большинство белков подвергается гидролизу в верхнем (проксимальном, т.е. ближайшем) отделе тонкого кишечника, хотя процесс начинается в желудке.

Пепсин в желудке является неспецифической эндопептидазой, расщепляющей белки на более мелкие пептиды.

Проэнзимы (т.е. предшественники ферментов) секрета поджелудочной железы активируются дуоденальной энтерокиназой при попадании в кишечник, и затем трипсин продолжает активировать самого себя и другие энзимы.

Трипсин и химотрипсин расщепляют белки на более мелкие пептиды.

Карбоксипептидаза А и В отщепляют конечные аминокислоты из этих пептидов.

Конечным результатом такого внутрипросветного пищеварения являются некоторые свободные аминокислоты, но преимущественно мелкие пептиды. Внутренние соединения белков расщепляются эластазой, а нуклеиновые кислоты — некоторыми другими энзимами, такими как рибонуклеаза и дезоксирибонуклеаза.

По завершении процесса протеолиза свободные аминокислоты могут всасываться через тонкий кишечник, в то время как более крупные пептиды подвергаются дальнейшему расщеплению энзимами щеточной каемки, известными как пептидазы. Пока более крупные пептиды расщепляются в щеточной каемке, дипептиды абсорбируются в энтероцит и подвергаются дроблению пептидазой внутри клетки.

Существует семь различных видов пептидазы.

Абсорбция (т.е.

всасывание) аминокислот — это энергозависимый активный процесс, тесно связанный с транспортировкой натрия, которая, в свою очередь, как предполагают, тесно связана с механизмами аденозинтрифосфатазы (ATPase), создающими трансэнтероцитный градиент.

Для различных классов аминокислот используются разные носители. Из энтероцитов аминокислоты покидают тонкий кишечник через портальное кровообращение. Некоторая часть их используется энтероцитами для восстановления и как источник энергии.

Источники:Биохимия: Учеб. для вузов, Под ред. Е.С. Северина., 2003. 779 с. ISBN 5-9231-0254-4

http://www.biochemistry.ru/biohimija_severina/B5873Content.html

Источник: http://kineziolog.su/content/perevarivanie-belkov

Расщепление белков в пищеварительном тракте

«Расщепление белков в желудочно-кишечном тракте» — это первая из четырёх статья из цикла «Обмен белков в организме человека»

В течение всей жизни в организме происходят одновременно разрушения и биосинтез клеток и тканей. Эти противоположные, но тесно связанные между собой процессы — ассимиляция и диссимиляция — составляют основу жизни.

Итак, в организм должны постоянно поступать вещества, необходимые для построения новых клеток. Главная роль в этом принадлежит белкам, так как ни углеводы, ни жиры не могут их заменить в образовании основных структурных элементов органов и тканей.

Среди различных преобразований, присущих живой материи, основное место занимает белковый обмен.

В связи с тем, что белки являются азотсодержащими веществами, одним из методов, характеризующим состояние белкового обмена в организме, может быть определение баланса азота.

У здорового человека при нормальном питании отмечается состояние белкового равновесия, когда поступление азота компенсирует его затраты. При отрицательном азотистом балансе количество выведенного азота превышает его  количество, поступающее в составе белков.

Такое состояние может наблюдаться при нарушении деятельности пищеварительной системы, белковом голодании и т п.

Положительный азотистый баланс бывает в тех случаях, когда количество выведенного азота меньше того, что поступает в составе белков. Это характерно для растущего организма, при беременности, при повышении активности процессов биосинтеза белка (например, при физических нагрузках).

Для синтеза белков в организме необходимы различные аминокислоты. Некоторые из них, образующиеся в самом организме, называются заменимыми.

Аминокислоты, не синтезирующиеся в организме человека, называются незаменимыми. Они должны регулярно поступать с пищей.

Белки, в состав которых входят заменимые и незаменимые аминокислоты в соотношениях, приближающихся к таковым в организме, называют полноценными.

Среди пищевых продуктов практически нет белков, которые полностью соответствуют этим требованиям. Наиболее близки к полноценному белки материнского молока, куриного яйца. Итак, для полного обеспечения здорового организма полноценными белками в суточный рацион должны быть включены различные пищевые продукты как животного, так и растительного происхождения.

Для нормальной жизнедеятельности человека необходимо поступление такого количества полноценного белка, которое будет покрывать все потребности организма. Оно зависит от пола, возраста, интенсивности труда и т.д.

С учетом этих факторов разработаны нормы белкового питания.

Недостаточное потребление белков приводит к нарушению процессов жизнедеятельности, ухудшению здоровья, а длительное белковое голодание неизбежно заканчивается гибелью.

Белки необходимы для организма, прежде всего, как пластический материал, из которого строятся клетки всех тканей, органов и систем. Однако пищевые белки не могут быть использованы без предварительного расщепления в организме, так как они имеют сложную структуру и видовую специфичность.

Расщепление (гидролиз) белков на аминокислоты, которые лишены видовой и тканевой специфичности, происходит в желудочно-кишечном тракте.

Расщепление белков в пищеварительном тракте (ЖКТ)

Переваривание питательных веществ (белков, углеводов, липидов) — это процесс гидролиза соответствующих соединений, входящих в состав продуктов питания, который происходит в пищеварительном тракте и приводит к образованию простых биомолекул. Последние за счет действия специфических механизмов мембранного транспорта всасываются в кровь или лимфу.

Переваривание белков начинается в желудке под действием желудочного сока. В состав желудочного сока входит соляная кислота, которая вырабатывается обкладочными  клетками слизистой оболочки желудка. Она денатурирует белок, облегчает его  последующее расщепление.

В состав желудочного сока входят кислые фосфаты и некоторые органические кислоты. Соляная кислота способствует превращению профермента пепсиногена, который секретируется главными клетками слизистой оболочки желудка, в активный протеолитический фермент пепсин.

Оптимальная концентрация водородных ионов для пепсина составляет 1,5 — 2,5, что соответствует кислотности желудочного сока в процессе пищеварения. При увеличении рН среды до 6,0 (в кишечнике) пепсин теряет свою активность. Пепсин относится к однокомпонентным ферментам, то есть к ферментам-протеинам. За сутки в желудке вырабатывается около 2 г пепсина.

Каталитическая активность пепсина желудка очень высока. Он катализирует расщепление пептидных связей в молекуле белка, образованных аминогруппами ароматических и дикарбоновых аминокислот. В результате действия пепсина образуются полипептиды различной величины и отдельные свободные аминокислоты.

Кроме пепсина, в желудочном соке содержится протеолитический фермент гастриксин, оптимальное значение рН которого находятся в пределах 3,5 — 4,5. Гастриксин вступает в действие на последних этапах переваривания пищи в желудке.

В желудке грудных детей обнаружен сычужный фермент — химозин. Оптимум действия этого фермента рН 3,5 — 4,0. Под влиянием химозина в присутствии солей кальция казеиноген молока в ходе гидролиза превращается в казеин и молоко свёртывается.

Легче других в желудке перевариваются альбумины и глобулины животного и растительного происхождения; плохо расщепляются белки соединительной ткани (коллаген и эластин) и совсем не расщепляются кератин и протамины.

Частично переваренная полужидкая масса питательных соединений, которая образуется в желудке (химус) периодически поступает через пилорический клапан в двенадцатиперстную кишку.

В эту часть пищеварительного канала поступают из  поджелудочной железы протеолитические ферменты и пептидазы, которые действуют на пептиды, поступающие из желудка.

Каталитическое действие этих ферментов происходит в слабощелочной среде (рН 7,5 — 8,0), которая образуется имеющимися в кишечном соке бикарбонатами.

Большинство ферментов протеолитического действия, функционирующих в тонкой кишке, синтезируются в экзокринных клетках поджелудочной железы в виде проферментов, которые активируются после их поступления в двенадцатиперстную кишку (трипсиноген, химотрипсиноген, проэластаза, прокарбоксипептидазы А и Б). Гидролиз белков и пептидов, поступающих из желудка, происходит как в полости тонкой кишки, так и на поверхности энтероцитов — пристеночное или мембранное пищеварение.

Сок поджелудочной железы поступает в двенадцатиперстную кишку и смешивается с кишечным соком. Эта смесь содержит протеолитические ферменты, расщепляющие белки, альбумозы и пептоны до небольших пептидов, а затем до аминокислот. К протеолитическим ферментам относятся трипсин, химотрипсин, карбоксипептидазы, аминопептидазы и большая группа три- и дипептидаз.

Трипсин находится в соке поджелудочной железы в неактивной форме, в виде профермента трипсиногена. Его активация происходит под действием фермента кишечного сока — энтерокиназы. Для процесса активации необходимы ионы Са2+. Процесс преобразования трипсиногена в трипсин осуществляется путем отщепления небольшого пептида с N-конца пептидной цепи фермента.

Трипсин гидролизует как нерасщепленные в желудке белки, так и высокомолекулярные пептиды, действуя главным образом на пептидные связи между аргинином и лизином. Оптимум рН для трипсина составляет 7,0 — 8,0. Трипсин делает сравнительно неглубокий гидролиз белка, образует полипептиды и небольшое количество свободных аминокислот.

Активность трипсина может снижаться под влиянием ряда ингибиторов. К ним относятся основные пептиды с молекулярной массой 9000 ед. Они обнаружены в поджелудочной железе, крови, легких, в бобах сои. Снижает активность трипсина и мукопротеин, содержащийся в сырых яйцах — авидин.

Химотрипсин — второй протеолитический фермент поджелудочной железы. Он также секретируется в неактивной форме, в виде химотрипсиногена. Под действием трипсина химотрипсиноген переходит в активный фермент — химотрипсин.

Действие химотрипсина подобно действию трипсина.

Оптимум рН для обоих ферментов примерно одинаковый, химотрипсин действует на белки и полипептиды, содержащие ароматические аминокислоты (тирозин, фенилаланин, триптофан), а также на пептидные связи, которые не подвергаются воздействию трипсина (метионин, лейцин).

Пептиды, которые образуютсяся в результате воздействия на белки пепсина, трипсина и химотрипсина в нижних отделах тонкой кишки, подвергаются дальнейшему расщеплению.

Этот процесс осуществляют карбоксипептидазы, аминопептидазы. Эти ферменты относятся к металлоферментам.

Они активируются двухвалентными ионами: Mg2+, Mn2+, Со2+, которые играют важную роль в формировании фермент-субстратного комплекса.

Механизм действия амино- и карбоксипептидаз заключается в отщеплении от пептидов конечных аминокислот, имеющих свободную аминную или карбоксильную группу.

 Небольшие пептиды, которые остались нерасщепленными и состоят из трех-четырех аминокислотных остатков, подвергаются гидролизу специфическими ди- и триаминопептидазами. В соке поджелудочной железы присутствует фермент эластаза.

Эластаза — эндопептидаза, которая также имеет широкую субстратную специфичность, расщепляя пептидные связи, образующиеся остатками аминокислот малого размера — глицина, аланина, серина.

Таким образом, в результате последовательного действия на белки протеолитических ферментов в кишечнике образуются свободные аминокислоты, которые всасываются в кровь через стенку кишечника.

Следующая вторая статья из цикла «Обмен белков в организме человека» — «Обезвреживание продуктов гниения белков в кишечнике». Третья статья «Обмен аминокислот в тканях»

Источник: http://infection-net.ru/biohimiya/rasshheplenie-belkov-v-pishhevaritelnom-trakte

Время усвоения белков

Белки выполняют разнообразные функции в организме: строительный материал, защитную, транспортную, ферментативную и прочие функции. Конечно, белки могут использоваться как энергия организмом, но не как основная. Так как организм бережет их и старается не использовать для выработки собственной энергии.

В первую очередь они – строительный материал для новых клеток. Может возникнуть вопрос, зачем взрослому уже не растущему организму что-то строить? Дело в том, что ежедневно в теле отмирают миллиарды клеток, а на их замену должны быть созданы новые.

Если не будет хватать строительного материала в виде белков, то восстановление и обновление органов и тканей будет идти медленно, а значит, человек будет быстрее стареть, болеть и плохо себя чувствовать. Потому в организме человека белки всё время работают. Процесс синтез-распад белка происходит постоянно.

Ежедневно около 200 г белка в организме распадается на аминокислоты. Таким образом в крови поддерживается некий запас аминокислот т.к. синтез белка не начинается если нет какого-то из компонентов. И для текущих необходимых синтезов этот запас используется.

Полученные в процессе переваривания белка аминокислоты всасываются в кровь, и она транспортирует аминокислоты в различные клетки, где снова синтезируются белки, характерные данной клетки. При распаде клетки происходит ее разложение на составные части, в том числе на аминокислоты, которые снова попадают в кровь и используется для различных нужд.

процесс синтеза белка

При несбалансированной диете или повышенной аэробной нагрузке, когда исчерпаны запасы углеводов (гликогена), через механизм глюконеогенеза часть аминокислот (аланин, глютамин, БЦАА, и т.д.

) превращается в глюкозу. Соответственно по окончании нагрузки дополнительно расщепляется белок, чтобы восполнить прореху. Первый кандидат на эту роль — избыточная мышечная масса.

Потому мускулистых марафонцев не бывает.

Как видите белок важный элемент для организма. Но не каждый белок показан для того или иного тренинга: все источники белка обладают разной скоростью усвоения. А этот показатель очень важен для времени тренировки. К примеру, для утреннего тренинга нужен быстрый белок, для вечернего – медленный, а для дневного – что-то среднее.

Легкость усвоения белка сильно зависит от его строения. Молочный и яичный белки, находящиеся в растворе в виде отдельных молекул, свернутых в клубки, усваиваются очень хорошо. Однако когда мы получаем из молока творог или варим яйца, происходит процесс, называемый денатурацией.

Часть связей в белках рвется, особенно сульфидные мостики и слабые связи между некоторыми аминокислотными остатками. Белковые молекулы в молоке и яйцах распрямляются, спутываются, и организму становится тяжелее справиться с ними. Тем не менее белок из жидких молочных продуктов (молоко, кефир, айран и т.

д), яйца всмятку усваивается легче всего — от 1 до 2 часов. Эти продукты хорошо пойдут после тренировки.

молочные продукты и яйца

Белки из мяса птицы, отварной рыбы и яиц вкрутую наоборот, при варке становятся более легкоусвояемыми, хотя их пищевая ценность несколько падает. Их скорость усвоения от 2 до 3 часов. Также хорошо употреблять в течение всего дня.

птица

Мясо – вообще отдельный вопрос. Белковые волокна красного мяса не предназначены для поедания. Их задача вырабатывать силу у животного. Поэтому они жесткие, белок пронизан поперечными связями, и переваривать его организму трудно.

Денатурация при варке несколько разрушает поперечные связи, но все же красное мясо усваивается гораздо труднее, чем молоко. Но употребляя красное мясо, организм получает больше глутамина и дополнительный «бонус» — креатин, улучшающий работу мускулатуры.

Потому если и употреблять красное мясо, то лучше не позже обеда и в отварном или запеченном виде. Скорость усвоения жирного мяса — от 5 до 7 часов.

мясо

Растительные белки по большей части получаются из семян, где белок запасается как «строительный материал» для будущего растения. Тем не менее, он упакован достаточно плотно, и привести его в удобоваримое состояние трудно. Особенно долго приходится мучить бобовые, в которых, как назло, больше всего белка.

К тому же эти продукты часто вызывают бурную реакцию организма (вы когда-нибудь попадали в приличное общество, наевшись гороха?). Грибной белок вообще тяжел для желудка из-за волокнистой структуры и несколько своеобразного химического состава, в частности присутствия углеводных остатков.

Однако он богаче незаменимыми аминокислотами, чем соевый! Скорость усвоения бобовых и грибов — от 4 до 5 часов;

бобовые

Немного о сое. Из растительных источников белка она является едва ли наиболее предпочтительной из-за высокой биологической ценности и относительно хорошей усвояемости. Однако соевый белок все же неполноценен и требует дополнительной обработки — удаления углеводов, вызывающих желудочно-кишечные неприятности.

И последнее для вечернего приема необходим медленный белок казеин. Прекрасный его источник творог.

творог

Казеин будет поддерживать анаболические процессы во время сна, при этом человек не поправится. Это нужно для того, чтобы не произошел распад мышечной ткани. Скорость усвоения казеина от 4-6 часов.

Источник: https://zen.yandex.ru/media/id/5a7b8213a815f1b63e26b0dd/5b67ff12c3288d00a833d839

Переваривание и всасывание макронутриентов

Белки – это состоящие из аминокислот макромолекулы. Во рту переваривания белков не происходит. Содержащаяся в желудке соляная кислота коагулирует пищевые белки. Это значит, что крупные молекулы пищевых белков разворачиваются и образующийся в желудке фермент пепсин может начинать частичное переваривание (гидролиз) белков.

Ферменты, необходимые для окончательного переваривания белков, выбрасываются поджелудочной железой в верхний отдел тонкой кишки – двенадцатиперстную кишку.

Работающий в желудке пепсин вместе с работающими в двенадцатиперстной кишке трипсином и другими ферментами расщепляют большинство пищевых белков до аминокислот.

Образуется также небольшое количество коротких пептидов, которые расщепляются до аминокислот под воздействием ферментов каемчатых энтероцитов тонкой кишки.

Во время нахождения перевариваемой пищевой массы в тощей кишке, среднем отделе тонкой кишки, происходит всасывание образовавшихся из белков или присутствовавших в пище свободных аминокислот. Получившиеся вещества всасываются непосредственно в кровоток или лимфатическую систему. Кровь доставляет питательные вещества в первую очередь в печень, где происходит задействование аминокислот.

Переваривание и всасывание липидов

Жиры (триглицериды – состоят из трех жирных кислот и глицерола) составляют 95–98 % пищевых липидов. Основными присутствующими в пище липидами как раз и являются жиры. Существенного расщепления жиров во рту не происходит. Тем не менее, во рту присутствует образующийся под языком фермент липаза, который расщепляет небольшие количества жиров. 

В желудке присутствует фермент желудочная липаза. Он обладает несильным действием, но поскольку он относительно стоек к воздействию кислоты, то в желудке происходит умеренное расщепление некоторого количества триглицеридов.

Триглицериды должны быть сначала преобразованы в верхнем отделе тонкой кишки – в двенадцатиперстной кишке – в тонкую эмульсию, и только затем соответствующие ферменты (липазы) смогут расщепить их на глицерол и жирные кислоты.

Чрезвычайно большую роль в образовании эмульсии играют желчные соки и их соли. Молочные белки (казеины) – тоже очень хорошие тонкие эмульгаторы пищи.

Образованию тонкой эмульсии способствует также то, что выбрасываемые поджелудочной железой бикарбонаты реагируют с поступающей из желудка кислотной пищевой массой, в результате чего образуются необходимые для пищеварения газы, основательно перемешивающие эту пищевую массу. Перистальтика стенок кишечника также помогает перемешивать его содержимое.

Из поджелудочной железы в двенадцатиперстную кишку поступает главный фермент процесса переваривания жиров – панкреатическая липаза. Он вместе с другими ферментами расщепляет пищевые липиды на простые соединения (триглицериды, глицерол, свободные жирные кислоты), а фосфолипиды – на их первичные компоненты.

Во время нахождения перевариваемой пищевой массы в среднем отделе тонкой кишки происходит всасывание образовавшихся из пищевых жиров глицерола и жирных кислот. Получившиеся вещества всасываются непосредственно в кровоток или лимфатическую систему.

Переваривание и всасывание крахмала

С точки зрения переваривания сложных углеводов наиболее важным является расщепление именно крахмала.

Из всех пищевых углеводов только крахмал начинает перевариваться во рту. Это осуществляется за счет содержащегося в слюне фермента амилазы. Под его воздействием часть крахмала расщепляется на более мелкие составляющие.

Если долго пережевывать богатую крахмалом пищу (а это очень полезно), то небольшая часть крахмала будет расщеплена до гликозина (так при долгом жевании хлеба он становится сладким).

Прочие содержащиеся в пище углеводы (например, сахароза и лактоза) во рту не расщепляются.

Поскольку в желудке из-за соляной кислоты среда сильно кислотная, дальнейшего переваривания углеводов там практически не происходит. Соляная кислота нужна в первую очередь для превращения расщепляющего белки фермента пепсиногена в пепсин и высвобождения многих гормонов, обеспечивающих работу желудочного сока. Соляная кислота также истребляет бактерии.

Из поджелудочной железы в верхний отдел тонкой кишки, двенадцатиперстную кишку, выбрасывается панкреатическая амилаза. Это самый важный фермент для переваривания углеводов, который расщепляет основную часть крахмала.

Панкреатическая амилаза вместе с собственными ферментами тонкой кишки доводит до конца процесс расщепления крахмала до глюкозы.

Под воздействием ферментов каемчатых энтероцитов тонкой кишки (сахаразы, лактазы и других) происходит расщепление на компоненты также и сахарозы и лактозы.

Во время нахождения перевариваемой пищевой массы в тощей кишке, среднем отделе тонкой кишки, происходит всасывание образовавшихся из сложных углеводов или присутствовавших в пище свободных глюкозы и фруктозы, которые всасываются напрямую в кровоток или лимфатическую систему. Кровь доставляет питательные вещества в первую очередь в печень, где происходит их использование.

Микроорганизмы, обитающие в толстой кишке, расщепляют клетчатку, которую пищеварительные ферменты расщепить не в состоянии. В ходе этого процесса образуются короткие жирные кислоты, которые всасываются в кровь и которые организм может использовать для получения энергии, а также активизации перистальтики.

Микрофлора толстой кишки помогает расщепить значительную часть целлюлозы, в результате чего также образуются короткие жирные кислоты. Значительная часть этих жирных кислот всасывается в клетки слизистой оболочки толстой кишки, в которых их расщепление покрывает часть энергетической потребности данных клеток.

Источник: https://toitumine.ee/ru/pishhevarenie-i-obmen-veshhestv/perevarivanie-i-vsasyvanie-makronutrientov

Ссылка на основную публикацию
Adblock
detector