Классификация углеводов: моносахариды, олигосахариды и полисахариды

Они разделяются на несколько типов согласно своему строению — моносахариды, дисахариды и полисахариды. Следует разобраться, для чего они нужны и каковы их химические и физические свойства.

Классификация углеводов

Углеводами называют соединения, в составе которых находятся углерод, водород и кислород. Чаще всего они имеют природное происхождение, хотя некоторые создаются промышленным путем. Их роль в жизнедеятельности живых организмов огромна.

Основными их функциями называют следующие:

  1. Энергетическая. Эти соединения – главный источник энергии. Большая часть органов может полноценно работать за счет энергии, полученной при окислении глюкозы.
  2. Структурная. Углеводы необходимы для формирования почти всех клеток организма. Клетчатка играет роль опорного материала, а в костях и хрящевой ткани находятся углеводы сложного типа. Одним из компонентов клеточных мембран является гиалуроновая кислота. Также углеводистые соединения требуются в процессе выработки ферментов.
  3. Защитная. При функционировании организма осуществляется работа желез, выделяющих секреторные жидкости, нужные для защиты внутренних органов от патогенного воздействия. Значительная часть этих жидкостей представлена углеводами.
  4. Регуляторная. Эта функция проявляется во влиянии на человеческий организм глюкозы (поддерживает гомеостаз, контролирует осмотическое давление) и клетчатки (воздействует на желудочно-кишечную перистальтику).
  5. Особые функции. Они свойственны отдельным видам углеводов. К таким особым функциям относятся: участие в процессе передачи нервных импульсов, формирование разных групп крови и пр.

Исходя из того, что функции углеводов достаточно разнообразны, можно предположить, что эти соединения должны различаться по своему строению и особенностям.

Это действительно так, и основная классификация их включает в себя такие разновидности, как:

  1. Моносахариды. Они считаются наиболее простыми. Остальные типы углеводов вступают в процесс гидролиза и распадаются на более мелкие составляющие. У моносахаридов такой способности нет, они являются конечным продуктом.
  2. Дисахариды. В некоторых классификациях их относят к олигосахаридам. В их составе находится две молекулы моносахарида. Именно на них делится дисахарид при гидролизе.
  3. Олигосахариды. В составе этого соединения находится от 2 до 10 молекул моносахаридов.
  4. Полисахариды. Эти соединения являются самой крупной разновидностью. В их состав входит больше 10 молекул моносахаридов.

У каждого вида углеводов есть свои особенности. Нужно рассмотреть их, чтобы понять, как каждый из них влияет на человеческий организм и в чем его польза.

Моносахариды

Они отличаются твердым агрегатным состоянием и сладким вкусом. У них есть способность растворяться в воде. Также они могут растворяться в спиртах (реакция слабее, чем с водой). Моносахариды почти не реагируют на смешение с эфирами.

Чаще всего упоминают природные моносахариды. Некоторые из них люди потребляют вместе с продуктами питания. К ним относят глюкозу, фруктозу и галактозу.

Они содержатся в таких продуктах, как:

  • мед;
  • шоколад;
  • фрукты;
  • некоторые виды вина;
  • сиропы и пр.

Основной функцией углеводов такого типа является энергетическая. Нельзя сказать, что организм не может без них обойтись, но у них есть свойства, важные для полноценной работы организма, например, участие в обменных процессах.

Моносахариды организм усваивает быстрее всего, что происходит в ЖКТ. Процесс усвоения сложных углеводов, в отличие от простых соединений, не так прост. Сначала сложные соединения должны разделиться до моносахаридов, лишь после этого они усваиваются.

Глюкоза

Глюкоза обеспечивает клетки мышечной и мозговой тканей энергией. При попадании в организм вещество усваивается, попадает в кровь и распространяется по всему телу. Там происходит ее окисление с высвобождением энергии. Это основной источник энергетической подпитки для мозга.

При нехватке глюкозы в организме развивается гипогликемия, которая в первую очередь отражается на функционировании мозговых структур. Однако чрезмерное ее содержание в крови тоже опасно, поскольку ведет к развитию сахарного диабета. Также при употреблении большого количества глюкозы начинает увеличиваться масса тела.

Фруктоза

Поэтому данное соединение считается неопасным для диабетиков, поскольку его потребление не ведет к резкому изменению количества сахара в крови. Тем не менее при таком диагнозе осторожность все же необходима.

У фруктозы есть способность к быстрому преобразованию в жирные кислоты, что становится причиной развития ожирения. Также из-за этого соединения снижается чувствительность к инсулину, что вызывает диабет 2 типа.

Это вещество можно получить из ягод и фруктов, а еще – из меда. Обычно оно там находится в сочетании с глюкозой. Соединению тоже присущ белый цвет. Вкус сладкий, причем эта особенность проявляется интенсивнее, чем в случае с глюкозой.

Другие соединения

Существуют и другие моносахаридные соединения. Они могут быть природными и полуискусственными.

К природным относится галактоза. Она тоже содержится в пищевых продуктах, но не встречается в чистом виде. Галактоза является результатом гидролиза лактозы. Основным ее источником называют молоко.

  • Другими природными моносахаридами являются рибоза, дезоксирибоза и манноза.
  • Также есть разновидности таких углеводов, для получения которых используются промышленные технологии.
  • Эти вещества тоже находятся в продуктах питания и попадают в человеческий организм:
  • рамноза;
  • эритрулоза;
  • рибулоза;
  • D-ксилоза;
  • L-аллоза;
  • D-сорбоза и пр.

Каждое из этих соединений отличается своими особенностями и функциями.

Дисахариды и их применение

Следующий тип углеводных соединений – дисахариды. Они считаются сложными веществами. В результате гидролиза из них образуется две молекулы моносахаридов.

Этот тип углеводов отличается следующими особенностями:

  • твердость;
  • растворимость в воде;
  • слабая растворимость в концентрированных спиртах;
  • сладкий вкус;
  • цвет – от белого до коричневого.

Основные химические свойства дисахаридов заключаются в реакциях гидролиза (происходит разрыв гликозидных связей и образование моносахаридов) и конденсации (формируются полисахариды).

Встречается 2 типа таких соединений:

  1. Восстанавливающие. Их особенностью является наличие свободной полуацетальной гидроксильной группы. За счет нее у таких веществ присутствуют восстановительные свойства. К данной группе углеводов относятся целлобиоза, мальтоза и лактоза.
  2. Невосстанавливающие. У этих соединений нет возможности к восстановлению, поскольку у них отсутствует полуацетальная гидроксильная группа. Наиболее известными веществами этого типа являются сахароза и трегалоза.

Эти соединения широко распространены в природе. Они могут встречаться как в свободном виде, так и в составе других соединений. Дисахариды являются источником энергии, поскольку при гидролизе из них образуется глюкоза.

Лактоза очень важна для детей, поскольку является основным из компонентов детского питания. Еще одной функцией углеводов этого типа является структурная, поскольку они входят в состав целлюлозы, которая нужна для формирования растительных клеток.

Характеристика и особенности полисахаридов

Еще одной разновидностью углеводов являются полисахариды. Это наиболее сложный тип соединений. Состоят они из большого количества моносахаридов (основной их компонент — глюкоза). В ЖКТ полисахариды не усваиваются – предварительно осуществляется их расщепление.

Особенности этих веществ таковы:

  • нерастворимость (либо слабая растворимость) в воде;
  • цвет желтоватый (или окраска отсутствует);
  • у них нет запаха;
  • почти все они безвкусны (некоторые имеют сладковатый вкус).

Еще одно свойство – образование производных. Полисахариды могут вступать в реакцию с кислотами.

Продукты, образующиеся в ходе этих процессов, очень разнообразны. Это ацетаты, сульфаты, сложные эфиры, фосфаты и пр.

Примеры полисахаридов:

  • крахмал;
  • целлюлоза;
  • гликоген;
  • хитин.

Образовательный видео-материал о функциях и классификации углеводов:

Эти вещества важны для полноценного функционирования организма целиком и клеток по отдельности. Они снабжают организм энергией, участвуют в образовании клеток, оберегают внутренние органы от повреждений и неблагоприятного воздействия. Также они играют роль запасных веществ, которые нужны животным и растениям на случай сложного периода.

Рекомендуем другие статьи по теме

Источник: https://DiabetHelp.guru/pitanie/sahzam/monosaxaridy-disaxaridy-polisaxaridy.html

Углеводы: моносахариды, полисахариды и их метаболизм

Углеводы это класс органических соединений, который можно разделить на 4 группы: моносахариды, производные моносахаридов, олигосахариды и полисахариды.

Моносахариды

Моносахариды в зависимости от числа атомов углерода называют три, тетра, пентозами или гексозами (соответственно 3, 4, 5 или 6 углеродных атомов). Основным моносахаридом у человека является глюкоза.

Кроме нее в состав пищи или компонентов клеточных структур у человека входят такие гексозы, как фруктоза, манноза и галактоза, а в состав нуклеиновых кислот (РНК и ДНК) пентозы (рибоза и дезоксирибоза).

Из производных моносахаридов необходимо упомянуть сахарные кислоты, к которым относится глюкуроновая кислота. Связывание с ней различных органических веществ в печени приводит к уменьшению их токсичности и повышению растворимости в воде (например, образование моно и дигдюкуронида билирубина).

Сиаловые кислоты представлены кетозами с девятью атомами углерода (ацетилнейраминовая кислота, гликолилнейраминовая кислота) и входят в состав соединительной ткани. Сиаловые кислоты определяются в крови больных в качестве одного из маркеров воспаления.

Олигосахариды

К олигосахаридам относят соединения, содержащие от 2 до 10 моносахаридных остатков. Среди них большое значение имеют тридисахаридасахароза, лактоза и мальтоза.

Сахароза образована остатками глюкозы и фруктозы, она поступает в организм в виде пищевого тростникового или свекольного сахара, а также в составе кондитерских изделий. Часть сахарозы образуется в результате гидролиза углеводов в тонкой кишке.

Лактоза включает в себя остатки галактозы и глюкозы, ее основным источником является молоко. У человека и других млекопитающих она может синтезироваться клетками секреторного эпителия молочных желез в период лактации.

Мальтоза состоит из двух остатков глюкозы и образуется в ротовой полости и в тонкой кишке при расщеплении крахмала и гликогена аамилазой слюны и панкреатического сока.

Кроме дисахаридов, олигосахаридами также является ряд углеводов, входящих в состав гликопротеинов и гликолипидов. Эти соединения входят в состав мембран клеток различных органов.

Полисахариды

Полисахариды являются наиболее распространенной группой углеводов. Среди них выделяют гомополисахариды, повторяющейся единицей которых является какойлибо моносахарид, и гетерополисахариды, основой для повторения в которых служит дисахарид. Важнейшими гомополисахаридами для человека являются крахмал, гликоген и целлюлоза.

Крахмал поступает в организм человека с пищей растительного происхождения. Он подвергается расщеплению ферментами желудочнокишечного тракта и служит важнейшим источником глюкозы.

Гликоген является аналогом крахмала в животных тканях. Человек получает гликоген с пищей животного происхождения. Кроме того, часть гликогена синтезируется вновь и, откладываясь в печени и мышцах, служит резервным источником глюкозы.

Целлюлоза не синтезируется и не расщепляется в человеческом организме. Ее источником служит растительная пища. В кишечнике целлюлоза усиливает моторику кишечника, адсорбирует некоторые токсичные вещества и участвует в формировании каловых масс.

Гетерополисахариды входят в состав протеогликанов и составляют основу межуточного вещества соединительной ткани человека.

Полисахаридные группы протеогликанов содержат глюкозамин или галактозамин, поэтому эту группу веществ называют также гликозаминогликанье Гликозаминогликаны в водных растворах сильно гидратированы и образуют гели, что отражается в их прежнем названии мукополисахариды.

Различают несколько основных классов гликозаминогликанов гиалуроновая кислота, хондроитинсульфаты, дерматансульфат, кера тансульфаты и гепарин. Большинство гликозаминогликанов синтезируется фибробластами соединительной ткани, лишь гепарин синтезируется тучными клетками.

Гиалуроиовая кислота линейный полимер, состоящий из глюкуроновой кислоты и ацетилглюкозамина. Входит в состав клеточных стенок, синовиальной жидкости, стекловидного тела, обволакивает внутренние органы, является желеобразной бактерицидной смазкой.

Хондроитинсулъфаты разветвленные полимеры, состоящие из глюкуроновой кислоты и N-ацетилглюкозамина. Они служат основными структурными компонентами хрящевой ткани, сухожилий, роговицы глаза; содержатся также в костях и коже.

Гепарин является одним из основных физиологических антикоагулянтов в организме человека.

    Функции углеводов в организме
  • Энергетическая — до 67% суточного энергопотребления в организме обеспечивается за счет окисления углеводов, причем 2/3 этого количества расходуются на энергообеспечение головного мозга
  • Структурная углеводы являются обязательным компонентом мембран клеток и клеточных органелл
  • Пластическая промежуточные продукты распада углеводов используются для синтеза полисахаридов, аминокислот и липидов. Пентозы (рибоза, дезоксирибоза) входят в состав нуклеиновых кислот
  • Опорная гликозаминогликаны участвуют в построении межклеточного вещества соединительной ткани, в том числе опорнодвигательного аппарата (хрящей, костей и тому подобных)
  • Резервная гликоген является источником энергетического и пластического материала
  • Поддержание жидкого состояния крови гетерополисахарид гепарин является физиологическим антикоагулянтом
  • Обезвреживающая образование глюкуронидов в печени необходимо для обезвреживания токсичных веществ, например превращения непрямого билирубина в прямой или образования индикана из индола

Суточная потребность в углеводах для взрослого человека составляет 400-500 г.

Метаболизм углеводов

Основным источником углеводов являются продукты растительного происхождения. Животная пища служит источником гликогена, а молочные продукты лактозы (молочного сахара).

Углеводы пищи разделяются на рафинированные (освобожденные от сопутствующих примесей в процессе очистки) и нерафинированные, представленные преимущественно крахмалом с сопутствующей клетчаткой. Источниками рафинированных углеводов являются кондитерские изделия, выпечка из высших сортов пшеничной муки, свекловичный и тростниковый сахар.

Сахароза, фруктоза и глюкоза, содержащиеся в них, быстро всасываются в кровь и способствуют жирообразованию при избыточном содержании в рационе. Крахмал картофеля, зерновых, овощей и фруктов расщепляется постепенно, образующиеся моносахариды всасываются медленно, а клетчатка частично перерабатывается микрофлорой кишечника.

Ее пищевые волокна участвуют также в формировании каловых масс и регулируют моторную функцию кишечника.

Переваривание углеводов начинается в ротовой полости. Под действием аамилазы слюнных желез часть крахмала и гликогена пищи расщепляется с образованием декстринов (укороченных цепей крахмала и гликогена) и небольшого количества дисахарида мальтозы.

В желудке ферменты, расщепляющие сложные углеводы, отсутствуют. Однако внутри пищевого комка ферменты слюны продолжают действовать еще некоторое время, до инактивации аамилазы соляной кислотой желудочного сока.

Дальнейшее расщепление «полисахаридов осуществляется в двенадцатиперстной кишке под действием амилолитических ферментов панкреатического сока: аамилазы, олиго-1,6-глюкозидазы, амило-1,6-глюкозидазы.

На образующиеся при расщеплении олигосахариды действуют пристеночные ферменты тонкой кишки (мальтаза, сахараза, у-амилаза, трегалаза и лактаза).

Из полости кишки моносахариды (глюкоза, фруктоза, манноза и галактоза) переносятся путем активного транспорта вэнтероциты, где большинство из них превращается в глюкозу через ряд реакций. Затем глюкоза проникает в кровь путем пассивного транспорта по градиенту концентраций.

До 90% образовавшейся глюкозы всасывается в кровь. Оставшиеся 10% попадают в лимфу.

Через систему воротной вены моносахариды поступают в печень и подвергаются в ней различным превращениям, а также утилизируются клетками различных органов и тканей.

Внутри клеток глюкоза фосфорилируется до глюкозо-6-фосфата. Все последующие превращения осуществляются через эту стадию.

Синтез гликогена

Ни глюкоза, ни глюкозо-6-фосфат не могут накапливаться в клетках. Резервной формой углеводов в организме человека является гликоген. Его наибольшие запасы образуются в печени и скелетных мышцах. При снижении уровня глюкозы в крови активируется гликогенолиз (распад гликогена) для восполнения ее уровня.

Гликогенолиз усиливается на фоне возбуждения ЦНС, при действии адреналина, глюкагона, тяжелой физической работе. При этом в печени, в отличие от скелетных мышц, содержатся ферменты глюкозо6фосфатаза и глюкозо1фосфатаза, превращающие глюкозо6фосфат и глюкозо1фосфат соответственно в свободную глюкозу и фосфат.

Глюкоза поступает в кровь и служит источником питания для различных тканей, прежде всего для ЦНС.

В скелетных мышцах распад гликогена заканчивается образованием глюкозо-6-фосфата, который окисляется в процессе анаэробного гликолиза с получением энергии АТФ и молочной кислоты

Гликолиз

Гликолиз — центральный путь катаболизма глюкозы и многих других углеводов. Он может осуществляться в присутствии кислорода или без него (аэробный или анаэробный гликолиз). До стадии образования пирувата эти процессы протекают по одним и тем же ферментативным реакциям.

В анаэробных условиях пируват превращается в молочную кислоту (лактат). Эта реакция катализируется ферментом лактатдсгидрогеназой (ЛДГ). Молочная кислота всасывается в кровь, извлекается из нее клетками печени и вновь превращается в глюкозу.

В отсутствии кислорода гликолиз единственный процесс в животном организме, поставляющий энергию АТФ.

В эритроцитах, лишенных митохондрий, анаэробный гликолиз является основным источником поступления энергии.

Его активность также высока в печени и интенсивно работающей мышечной ткани, так как образование энергии в цикле Кребса лимитируется скоростью поступления кислорода.

Активизации анаэробного пути окисления глюкозы способствует недостаточное снабжение тканей кислородом в условиях гипоксии, в воспаленных тканях и в интенсивно растущих клетках злокачественных опухолей.

В аэробных условиях ЛДГ способна катализировать обратную реакцию превращение лактата в пируват. Эта реакция более активна в хорошо кровоснабжаемых органах: сердце, легких, почках и других.

Образовавшийся пируват подвергается превращениям в пи-руватдегидрогеназном комплексе, состоящем из трех ферментов (пируватдекарбоксилаза, ацетилтрансфераза, дегидрогеназа ди гидролипоевой кислоты) и пяти коферментов (ФАД, НАД, тиамин дифосфат (ТДФ), липоевая кислота и кофермент А (КоА)). В результате образуется ацетилКоА, при окислении которого в цикле Кребса образуется большое количество энергии АТФ.

Глюконеогенез

Глюконеогенез — синтез глюкозы из неуглеводных продуктов: лактата, пирувата, глицерина и гликогенных аминокислот. Активация глюконеогенеза наблюдается при голодании, когда у человека истощаются запасы гликогена, а головной мозг и сокращающиеся скелетные мышцы нуждаются в непрерывном поступлении глюкозы.

Большинство реакций глюконеогенеза являются обратными реакциями гликолиза. Интенсивность глюконеогенеза значительно усиливается при сахарном диабете.

Пентозофосфатный путь

Пентозофосфатный путь является альтернативным путем окисления глюкозы, в котором превращается не более 2% всех углеводов. Однако его биологическое значение огромно, так как в нем образуются НАДФ Н2 и рибозо-5-фосфат. Рибозо-5-фоефат необходим для синтеза ряда важных биологических молекул: РНК и ДНК, АТФ, КоА, НАД и ФАД.

Поэтому высокая потребность в рибозо5фосфате отмечается в клетках с большой скоростью нуклеинового обмена в эмбриональных тканях, клетках эпителия, семенников, стволовых клетках кроветворных органов, регенерирующих тканях.

В случае снижения потребности в рибозо-5-фосфате реакции пентозофосфатного пути продолжаются до образования НАДФ Н2, который необходим для синтеза жирных кислот, стероидов, заменимых аминокислот, восстановления глутатиона в эритроцитах.

Таким образом, реакции пентозофосфатного пути превращения углеводов достаточно интенсивно протекают в белой жировой ткани, печени, коре надпочечников, молочной и щитовидной железах. Окисление 1 моль глюкозы позволяет получить 12 моль НАДФ Н-2. Цикл превращений протекает в цитозоле клеток.

Это может быть полезным для Вас:

Источник: https://infolibrum.ru/diseases/carbohydrate_metabolism/klassifikatsiya-uglevodov.html

3.8.3. Углеводы (моносахариды, дисахариды, полисахариды)

Углеводы — органические соединения, чаще всего природного происхождения, состоящие только из углерода, водорода и кислорода.

Углеводы играют огромную роль в жизнедеятельности всех живых организмов.

Свое название данный класс органических соединений получил за то, что первые изученные человеком углеводы имели общую формулу вида Cx(H2O)y . Т.е. их условно посчитали соединениями углерода и воды.

Однако позднее оказалось, что состав некоторых углеводов отклоняется от этой формулы. Например, такой углевод как дезоксирибоза имеет формулу С5Н10О4.

В то же время существуют некоторые соединения, формально соответствующие формуле Cx(H2O)y, однако к углеводам не относящиеся, как, например, формальдегид (СН2О) и уксусная кислота (С2Н4О2).

Тем не менее, термин «углеводы» исторически закрепился за данным классом соединений, в связи с чем повсеместно используется и в наше время.

Классификация углеводов

В зависимости от способности углеводов расщепляться при гидролизе на другие углеводы с меньшей молекулярной массой их делят на простые (моносахариды) и сложные (дисахариды, олигосахариды, полисахариды).

Как легко догадаться, из простых углеводов, т.е. моносахаридов, нельзя гидролизом получить углеводы с еще меньшей молекулярной массой.

При гидролизе одной молекулы дисахарида образуются две молекулы моносахарида, а при полном гидролизе одной молекулы любого полисахарида получается множество молекул моносахаридов.

Химические свойства моносахаридов на примере глюкозы и фруктозы

Самыми распространенными моносахаридами являются глюкоза и фруктоза, имеющие следующие структурные формулы:

Как можно заметить, и в молекуле глюкозы, и в молекуле фруктозы присутствует по 5 гидроксильных групп, в связи с чем их можно считать многоатомными спиртами.

В составе молекулы глюкозы имеется альдегидная группа, т.е. фактически глюкоза является многоатомным альдегидоспиртом.

В случае фруктозы можно обнаружить в ее молекуле кетонную группу, т.е. фруктоза является многоатомным кетоспиртом.

Химические свойства глюкозы и фруктозы как карбонильных соединений

Все моносахариды могут реагировать в присутствии катализаторов с водородом. При этом карбонильная группа восстанавливается до спиртовой гидроксильной. Так, в частности, гидрированием глюкозы в промышленности получают искусственный подсластитель – гексаатомный спирт сорбит:

Молекула глюкозы содержит в своем составе альдегидную группу, в связи с чем логично предположить, что ее водные растворы дают качественные реакции на альдегиды.

И действительно, при нагревании водного раствора глюкозы со свежеосажденным гидроксидом меди (II) так же, как и в случае любого другого альдегида, наблюдается выпадение из раствора кирпично-красного осадка оксида меди (I).

При этом альдегидная группа глюкозы окисляется до карбоксильной – образуется глюконовая кислота:

Также глюкоза вступает и в реакцию «серебряного зеркала» при действии на нее аммиачного раствора оксида серебра. Однако, в отличие от предыдущей реакции вместо глюконовой кислоты образуется ее соль – глюконат аммония, т.к. в растворе присутствует растворенный аммиак:

Фруктоза и другие моносахариды, являющиеся многоатомными кетоспиртами, в качественные реакции на альдегиды не вступают.

Химические свойства глюкозы и фруктозы как многоатомных спиртов

Поскольку моносахариды, в том числе глюкоза и фруктоза, имеют в составе молекул несколько гидроксильных групп. Все они дают качественную реакцию на многоатомные спирты. В частности, в водных растворах моносахаридов растворяется свежеосажденный гидроксид меди (II). При этом вместо голубого осадка Cu(OH)2 образуется темно-синий раствор комплексных соединений меди.

Реакции брожения глюкозы

Спиртовое брожение

При действии на глюкозу некоторых ферментов глюкоза способна превращаться в этиловый спирт и углекислый газ:

Молочнокислое брожение

Помимо спиртового типа брожения существует также и немало других. Например, молочнокислое брожение, которое протекает при скисании молока, квашении капусты и огурцов:

Особенности существования моносахаридов в водных растворах

Моносахариды существуют в водном растворе в трех формах – двух циклических (альфа- и бета-) и одной нециклической (обычной). Так, например, в растворе глюкозы существует следующее равновесие:

Как можно видеть, в циклических формах отсутствует альдегидная группа, в связи с тем что она участвует в образовании цикла. На ее основе образуется новая гидроксильная группа, которую называют ацетальным гидроксилом. Аналогичные переходы между циклическими и нециклической формами наблюдаются и для всех других моносахаридов.

Дисахариды. Химические свойства

Общее описание дисахаридов

Дисахаридами называют углеводы, молекулы которых состоят из двух остатков моносахаридов, связанных между собой за счет конденсации двух полуацетальных гидроксилов либо же одного спиртового гидроксила и одного полуацетального. Связи, образующиеся таким образом между остатками моносахаридов, называют гликозидными. Формулу большинства дисахаридов можно записать как C12H22O11.

Наиболее часто встречающимся дисахаридом является всем знакомый сахар, химиками называемый сахарозой. Молекула данного углевода образована циклическими остатками одной молекулы глюкозы и одной молекулы фруктозы. Связь между остатками дисахаридов в данном случае реализуется за счет отщепления воды от двух полуацетальных гидроксилов:

Поскольку связь между остатками моносахаридов образована при конденсации двух ацетальных гидроксилов, для молекулы сахара невозможно раскрытие ни одного из циклов, т.е. невозможен переход в карбонильную форму. В связи с этим сахароза не способна давать качественные реакции на альдегиды.

Подобного рода дисахариды, которые не дают качественные реакции на альдегиды, называют невосстанавливающими сахарами.

Тем не менее, существуют дисахариды, которые дают качественные реакции на альдегидную группу. Такая ситуация возможна, когда в молекуле дисахарида остался полуацетальный гидроксил из альдегидной группы одной из исходных молекул моносахаридов.

В частности, в реакцию с аммиачным раствором оксида серебра, а также гидроксидом меди (II) подобно альдегидам вступает мальтоза. Связано это с тем, что в её водных растворах существует следующее равновесие:

Как можно видеть, в водных растворах мальтоза существует в виде двух форм – с двумя циклами в молекуле и одним циклом в молекуле и альдегидной группой. По этой причине мальтоза, в отличие от сахарозы, дает качественную реакцию на альдегиды.

Гидролиз дисахаридов

Все дисахариды способны вступать в реакцию гидролиза, катализируемую кислотами, а также различными ферментами. В ходе такой реакции из одной молекулы исходного дисахарида образуется две молекулы моносахарида, которые могут быть как одинаковыми, так и различными в зависимости от состава исходного моносахарида.

Так, например, гидролиз сахарозы приводит к образованию глюкозы и фруктозы в равных количествах:

А при гидролизе мальтозы образуется только глюкоза:

Дисахариды как многоатомные спирты

Дисахариды, являясь многоатомными спиртами, дают соответствующую качественную реакцию с гидроксидом меди (II), т.е. при добавлении их водного раствора ко свежеосажденному гидроксиду меди (II) нерастворимый в воде голубой осадок Cu(OH)2 растворяется с образованием темно-синего раствора.

Полисахариды. Крахмал и целлюлоза

  • Полисахариды — сложные углеводы, молекулы которых состоят из большого числа остатков моносахаридов, связанных между собой гликозидными связями.
  • Есть и другое определение полисахаридов:
  • Полисахаридами называют сложные углеводы, молекулы которых образуют при полном гидролизе большое число молекул моносахаридов.
  • В общем случае формула полисахаридов может быть записана как (C6H10O5)n.
  • Крахмал – вещество, представляющее собой белый аморфный порошок, не растворимый в холодной воде и частично растворимый в горячей с образованием коллоидного раствора, называемого в быту крахмальным клейстером.

Крахмал образуется из углекислого газа и воды в процессе фотосинтеза в зеленых частях растений под действием энергии солнечного света. В наибольших количествах крахмал содержится в картофельных клубнях, пшеничных, рисовых и кукурузных зернах. По этой причине указанные источники крахмала и являются сырьем для его получения в промышленности.

Целлюлоза – вещество, в чистом состоянии представляющее собой белый порошок, не растворимый ни в холодной, ни в горячей воде. В отличие от крахмала целлюлоза не образует клейстер. Практически из чистой целлюлозы состоит фильтровальная бумага, хлопковая вата, тополиный пух.

И крахмал, и целлюлоза являются продуктами растительного происхождения. Однако, роли, которые они играют в жизни растений, различны. Целлюлоза является в основном строительным материалом, в частности, главным образом ей образованы оболочки растительных клеток.

Крахмал же несет в основном запасающую, энергетическую функцию.

Химические свойства крахмала и целлюлозы

Горение

Все полисахариды, в том числе крахмал и целлюлоза, при полном сгорании в кислороде образуют углекислый газ и воду:

Образование глюкозы

При полном гидролизе как крахмала, так и целлюлозы образуется один и тот же моносахарид – глюкоза:

Качественная реакция на крахмал

При действии йода на что-либо, в чем содержится крахмал, появляется синее окрашивание. При нагревании синяя окраска исчезает, при охлаждении появляется вновь.

При сухой перегонке целлюлозы, в частности древесины, происходит ее частичное разложение с образованием таких низкомолекулярных продуктов как метиловый спирт, уксусная кислота, ацетон и т.д.

Поскольку и в молекулах крахмала, и в молекулах целлюлозы имеются спиртовые гидроксильные группы, данные соединения способны вступать в реакции этерификации как с органическими, так и с неорганическими кислотами:

Источник: https://scienceforyou.ru/teorija-dlja-podgotovki-k-egje/uglevody

Углеводы: химические свойства, способы получения и строение

 Углеводы (сахара) – органические соединения, имеющие сходное строение, состав большинства которых отражает формула Cx(H2O)y, где x, y ≥ 3.  

Исключение составляет дезоксирибоза, которая имеют формулу С5Н10O4 (на один атом кислорода меньше, чем рибоза).

Классификация углеводов

  • Моносахариды — содержат одно структурное звено.
  • Олигосахариды — содержат от 2 до 10 структурных звеньев (дисахариды, трисахариды и др.). 
  • Полисахариды — содержат n структурных звеньев.

Некоторые важнейшие углеводы:

Моносахариды Дисахариды Полисахариды
Глюкоза С6Н12О6

  • Фруктоза С6Н12О6
  • Рибоза С5Н10О5
  • Дезоксирибоза С5Н10О4
Сахароза С12Н22О11

  1. Лактоза С12Н22О11
  2. Мальтоза С12Н22О11
  3. Целлобиоза С12Н22О11
Целлюлоза (С6Н10О5)nКрахмал(С6Н10О5)n

По числу атомов углерода в молекуле

  • Пентозы — содержат 5 атомов углерода.
  • Гексозы — содержат 6 атомов углерода. 
  • И т.д.

По размеру кольца в циклической форме молекулы

  • Пиранозы — образуют шестичленное кольцо.
  • Фуранозы — содержат пятичленное кольцо. 

Химические свойства, общие для всех углеводов

1. Горение 

Все углеводы горят до углекислого газа и воды.

Например, при горении глюкозы образуются вода и углекислый газ

C6H12O6 + 6O2 → 6CO2 + 6H2O

2. Взаимодействие с концентрированной серной кислотой

Концентрированная серная кислота отнимает воду от углеводов, при этом образуется углерод С («обугливание») и вода.

Например, при действии концентрированной серной кислоты на глюкозу образуются углерод и вода

C6H12O6 → 6C + 6H2O

Моносахариды

Моносахариды – гетерофункциональные соединения, в состав их молекул входит одна карбонильная группа (группа альдегида или кетона) и несколько гидроксильных.

Моносахариды являются структурными звеньями олигосахаридов и полисахаридов.

Важнейшие моносахариды

Название и формула ГлюкозаC6H12O6 ФруктозаC6H12O6 РибозаC6H12O6
Структурная формула
Классификация
  • гексоза
  • альдоза
  • в циклической форме – пираноза
  • гексоза
  • кетоза
  • в циклической форме — фураноза
  • пентоза
  • альдоза
  • в циклической форме – фураноза

Глюкоза

Глюкоза – это альдегидоспирт (альдоза).

Она содержит шесть атомов углерода, одну альдегидную и пять гидроксогрупп.

Глюкоза существует в растворах не только в виде линейной, но и циклических формах (альфа и бета), которые являются пиранозными (содержат шесть звеньев):

α-глюкоза β-глюкоза

Химические свойства глюкозы

Водный раствор глюкозы

В водном растворе глюкозы существует динамическое равновесие между двумя  циклическими формами —   α и β   и  линейной  формой:

Качественная реакция на многоатомные спирты: реакция со свежеосажденным гидроксидом меди (II)

При взаимодействии свежеосажденного гидроксида меди (II) с глюкозой (и другими моносахаридами происходит растворение гидроксида с образованием комплекса синего цвета.

Реакции на карбонильную группу — CH=O

Глюкоза проявляет свойства, характерные для альдегидов.

  • Реакция «серебряного зеркала»
  • Реакция с гидроксидом меди (II) при нагревании. При взаимодействии глюкозы с гидроксидом меди (II) выпадает красно-кирпичный осадок оксида меди (I):
  • Окисление бромной водой. При окислении глюкозы бромной водой образуется глюконовая кислота:
  • Также глюкозу можно окислить хлором, бертолетовой солью, азотной кислотой.
Концентрированная азотная кислота окисляет не только альдегидную группу, но и гидроксогруппу на другом конце углеродной цепи.
  • Каталитическое гидрирование. При взаимодействии глюкозы с водородом происходит восстановление карбонильной группы до спиртового гидроксила, образуется шестиатомный спирт – сорбит:
  • Брожение глюкозы. Брожение — это биохимический процесс, основанный на окислительно-восстановительных превращениях органических соединений в анаэробных условиях.
  • Спиртовое брожение. При спиртовом брожении глюкозы образуются спирт и углекислый газ:
  • C6H12O6 → 2C2H5OH + 2CO2
  •           Молочнокислое брожение. При спиртовом брожении глюкозы образуются спирт и углекислый газ:
  •           Маслянокислое брожение. При спиртовом брожении глюкозы образуются спирт и углекислый газ:
  • Образование эфиров глюкозы (характерно для циклической формы глюкозы).
  1. Глюкоза способна образовывать простые и сложные эфиры.
  2. Наиболее легко происходит замещение полуацетального (гликозидного) гидроксила.
  3. Например, α-D-глюкоза взаимодействует с метанолом.
  4. При этом образуется монометиловый эфир глюкозы (α-O-метил-D-глюкозид):
Простые эфиры глюкозы получили название гликозидов.

В более жестких условиях  (например, с CH3-I)  возможно алкилирование и по другим оставшимся гидроксильным группам.

Моносахариды способны образовывать сложные эфиры как с минеральными, так и с карбоновыми кислотами.

Например, β-D-глюкоза реагирует с уксусным ангидридом в соотношении 1:5 с образованием пентаацетата глюкозы  (β-пентаацетил-D-глюкозы):

Получение глюкозы

Гидролиз крахмала

В присутствии кислот крахмал гидролизуется:

(C6H10O5)n + nH2O → nC6H12O6

Синтез из формальдегида

Реакция была впервые изучена А.М. Бутлеровым. Синтез проходит в присутствии гидроксида кальция:

6CH2=On  →  C6H12O6

Фотосинтез

В растениях углеводы образуются в результате реакции фотосинтеза из CO2 и Н2О:

 6CO2 + 6H2O → C6H12O6 + 6O2

Фруктоза

 Фруктоза — структурный изомер глюкозы. Это кетоноспирт (кетоза): она тоже может существовать в циклических формах (фуранозы).

Она содержит шесть атомов углерода, одну кетоновую группу и пять гидроксогрупп.

Фруктоза α-D-фруктоза β-D-фруктоза
  • Фруктоза – кристаллическое вещество, хорошо растворимое в воде, более сладкое, чем глюкоза.
  • В свободном виде содержится в мёде и фруктах.
  • Химические свойства фруктозы связаны с наличием кетонной и пяти гидроксильных групп.
  • При гидрировании фруктозы также получается сорбит.

Дисахариды

Дисахариды – это углеводы, молекулы которых состоят из двух остатков моносахаридов, соединенных друг с другом за счет взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой).

Сахароза (свекловичный или тростниковый сахар) С12Н22О11

  1. Молекула сахарозы состоит из остатков α-глюкозы и β-фруктозы, соединенных друг с другом:
  2. В молекуле сахарозы гликозидный атом углерода глюкозы связан из-за образования кислородного мостика с фруктозой, поэтому сахароза не образует открытую (альдегидную) форму.
Поэтому сахароза не вступает в реакции альдегидной группы – с аммиачным раствором оксида серебра   с гидроксидом меди при нагревании. Такие дисахариды называют невосстанавливающими, т.е. не способными окисляться.     
  • Сахароза подвергается гидролизу подкисленной водой. При этом образуются глюкоза и фруктоза:
  • C12H22O11 + 6H2O → C6H12O6 + C6H12O6
  •                                                                                    глюкоза   фруктоза

Мальтоза С12Н22О11

Это дисахарид, состоящий из двух остатков  α-глюкозы, она является промежуточным веществом при гидролизе крахмала.

Мальтоза является восстанавливающим дисахаридом (одно из циклических звеньев может раскрываться в альдегидную группу) и  вступает в реакции, характерные для альдегидов.

При гидролизе мальтозы образуется глюкоза.

C12H22O11 + H2O → 2C6H12O6

Полисахариды

Это дисахарид, состоящий из двух остатков  α-глюкозы, она является промежуточным веществом при гидролизе крахмала.

  Полисахариды — это природные высокомолекулярные углеводы, макромолекулы которых состоят из остатков моносахаридов.
  1. Основные представители — крахмал и целлюлоза — построены из остатков одного моносахарида — глюкозы. 
  2. Крахмал и целлюлоза имеют одинаковую молекулярную формулу: (C6H10O5)n, но совершенно различные свойства.
  3. Это объясняется особенностями их пространственного строения.
  4. Крахмал состоит из остатков α-глюкозы, а целлюлоза – из β-глюкозы, которые являются пространственными изомерами и отличаются лишь положением одной гидроксильной группы:

Крахмал

  • Крахмалом называется полисахарид, построенный из остатков циклической α-глюкозы.
  • В его состав входят:
  • амилоза (внутренняя часть крахмального зерна) – 10-20%
  • амилопектин (оболочка крахмального зерна) – 80-90%

Цепь амилозы включает 200 — 1000 остатков α-глюкозы (средняя молекулярная масса 160 000) и имеет неразветвленное строение.

  Амилопектин имеет разветвленное  строение и гораздо большую молекулярную массу, чем амилоза.

Свойства крахмала

  • Гидролиз крахмала: при кипячении в кислой среде крахмал последовательно гидролизуется:
  1. Запись полного гидролиза крахмала без промежуточных этапов:
  • Крахмал не дает реакцию “серебряного зеркала” и не восстанавливает гидроксид меди (II).
  • Качественная реакция на крахмал: синее окрашивание с раствором йода.

Целлюлоза

Целлюлоза (клетчатка) – наиболее распространенный растительный полисахарид. Цепи целлюлозы построены из остатков β-глюкозы и имеют линейное строение.

Свойства целлюлозы

  • Образование сложных эфиров с азотной и уксусной кислотами.
  • Нитрование целлюлозы.
  • Так как в  звене целлюлозы содержится 3 гидроксильные группы, то при нитровании целлюлозы избытком азотной кислоты возможно образование тринитрата целлюлозы, взрывчатого вещества пироксилина:
  • Ацилирование целлюлозы.
  • При действии на целлюлозу уксусного ангидрида (упрощённо-уксусной кислоты) происходит реакция этерификации, при этом возможно участие в реакции 1, 2 и 3 групп ОН.
  • Получается ацетат целлюлозы – ацетатное волокно.

    Целлюлоза, подобно крахмалу, в кислой среде может гидролизоваться, в результате тоже получается глюкоза. Но процесс идёт гораздо труднее.

Источник: https://chemege.ru/uglevody/

Ссылка на основную публикацию
Adblock
detector